24 research outputs found

    Zukunftsorientierte Produktentwicklung – Eine Systematik zur Ableitung von generationsübergreifenden Zielsystemen zukünftiger Produktgenerationen durch strategische Vorausschau = Future-Oriented Product Development – a Systematic Approach to Deriving Cross-Generational Systems of Objectives of Future Product Generations Through Strategic Foresight

    Get PDF
    Die im Rahmen dieser Arbeit durchgeführten Studien zeigen, dass Produktentwickler den Einsatz von Vorausschau als äußerst relevant ansehen, jedoch diese nicht ausreichend systematisch zur Findung und Validierung von Produktprofilen und Produktideen einsetzen. Dies ist unter anderem mit einem fehlenden Vertrauen in die generierten Vorausschauergebnisse begründet, sowie dadurch, dass diese häufig zu komplex sind und weniger auf konkrete Suchfelder mit Innovationspotential aufmerksam machen. In dieser Arbeit wird deshalb eine Systematik vorgestellt, die den Menschen im Mittelpunkt der Produktentwicklung (Albers, 2010), als kreativen Problemlöser der Technik zur Identifikation von Produktprofilen mit hohem Innovationspotential durch Vorausschau befähigt. Die Systematik folgt dabei dem Verständnis nach Dörner (1979), dass das Ziel einer jeden Produktentwicklung ist, einen unerwünschten Istzustand in einen erwünschten, zukünftigen Sollzustand zu überführen. Weiterhin folgt die Systematik basierend auf dem Verständnis des Modells der PGE – Produktgenerationsentwicklung nach Albers, dass jede Entwicklung auf Basis von Referenzen erfolgt. Das erste Modul der Systematik ist die Analyse des Istzustands. Dazu werden am Markt befindliche Referenzprodukte bezüglich deren heute relevanten Produkteigenschaften analysiert. Das zweite Modul ist die Synthese des Sollzustands durch Vorausschau zur Identifikation zukünftig relevanter Produkteigenschaften. Die Delta-Analyse ist das dritte Modul, bei dem ein Abgleich zwischen Ist- und Sollzustand erfolgt und eine Roadmap zur zielgerichteten Überführung vom Ist- in den Sollzustand abgeleitet sowie Suchfelder mit hohem Innovationspotential identifiziert werden. Das Nutzenversprechen der Systematik ist das Generieren von Wissen um zukünftig relevante Produkteigenschaften, das Richten der Kreativität der Produktentwickler auf Suchfelder mit hohem Innovationspotential, eine Priorisierung von Entwicklungsumfängen sowie eine strukturierte, dokumentierte und dadurch nachvollziehbare Entscheidungsfindung. Die durchgeführten Evaluationsstudien zur Anwendung der Systematik zeigen, dass Produktentwickler durch Anwendung der Systematik besser in der Lage sind, Vorausschauergebnisse für die Produktentwicklung zu nutzen. Dies zeigt sich insbesondere in den quantitativen Evaluationsnachweisen in der zweiten deskriptiven Studie: Zum einen steigt mit zeitlicher Exponierung der Probanden mit der Systematik der Erfüllungsgrad der identifizierten Erfolgsfaktoren. Zum anderen kann gezeigt werden, dass das lnnovationspotential der mit der Systematik generierten Produktprofile höher ist, als durch den bisher eher unstrukturierten Einsatz von Methoden der Vorausschau in der Produktentwicklung

    Industrie 4.0 – An empirical and literature-based study how product development is influenced by the digital transformation

    Get PDF
    The fourth industrial revolution, referred to as Industrie 4.0 in the German high-tech strategy, is in most cases associated with the industrialization of production, but the term is increasingly broadly understood. Industrie 4.0 means the networking of all areas involved in the value creation process. In areas such as production and politics, visions are already being driven forward, but in the development of products and product-related services it is often unclear how engineering needs to change to realize the potentials of Industrie 4.0. Several research projects are already dealing with the development of new processes, methods and tools to enable these potentials. However, studies show that companies do not have the resources or strategies to implement such solutions. In many ways, the influence of Industrie 4.0 and its impact on product development is still insufficiently known. Therefore, a literature-based study was conducted to systematically identify context factors that characterize Industrie 4.0. In order to analyze the impact on product development, a second step involved an impact analysis with the context factors of Industrie 4.0 onto the context factors of product development known from the literature. In a third step, strongly influenced fields of product development were identified and their relevance for the realization of the potentials of Industrie 4.0 for product development was evaluated in an online survey. In addition, the current status in these fields was analyzed in interviews with experts from industry. With methods of foresight a portfolio was created, which couples the influence of Industrie 4.0 on the context factors of product development with their future robustness. Comparing the current state of development with the findings from the portfolio, recommendations for future research were formulated

    An explorative approach to deriving future scenarios: A first comparison of the consistency matrix-based and the catalog-based approach to generating future scenarios

    Get PDF
    The development of robust products, meaning products that are successful regardless of changes in the future, requires an assessment of possible futures. This makes it possible to adapt to negative and unexpected conditions or circumstances. For this reason, future scenarios are developed that reflect possible futures based on influencing factors and their alternative developments on the product or system. For each factor, multidimensional future projections can be found, which are then evaluated for consistency. Up to now, scenarios have been created using the scenario management approach, which is based on consistency assessment of future projections pairs of key factors, or morphological methods (e.g. field anomaly relaxation). Both approaches are based at least in part on a plausibility check. On the one hand this leads to a high expenditure of time in scenario management, and on the other hand morphological methods consider a limited number of factors, which reduces the future space and thus limits informative value of the scenarios. In this research contribution, an explorative approach to deriving future scenarios is proposed that integrates morphological elements into scenario management. This significantly reduces the time required to generate future scenarios without having to reduce the number of considered key factors. First, the proposed approach is described with a process model. Second, the proposed form of scenario generation, the catalog-based scenario generation, is compared with the previously used approach to scenario generation with regard to advantages and disadvantages. Finally, the suitability for PGE - product generation engineering projects is evaluated, in particular regarding replicability, comprehensibility, effort and the completeness of the described future space. This is done by conducting three structured expert interviews and two case studies. Thereby, scenarios are created with both approaches. The criteria to evaluate the approaches are defined by a panel of experts on PGE

    Post-processing noisy quantum computations utilizing N-representability constraints

    Full text link
    We propose and analyze a method for improving quantum chemical energy calculations on a quantum computer impaired by decoherence and shot noise. The error mitigation approach relies on the fact that the one- and two-particle reduced density matrices (1- and 2-RDM) of a chemical system need to obey so-called N-representability constraints. We post-process the result of an RDM measurement by projecting it into the subspace where certain N-representability conditions are fulfilled. Furthermore, we utilize that such constraints also hold in the hole and particle-hole sector and perform projections in these sectors as well. We expand earlier work by conducting a careful analysis of the method's performance in the context of quantum computing. Specifically, we consider typical decoherence channels (dephasing, damping, and depolarizing noise) as well as shot noise due to a finite number of projective measurements. We provide analytical considerations and examine numerically three example systems, \ch{H2}, \ch{LiH}, and \ch{BeH2}. From these investigations, we derive our own practical yet effective method to best employ the various projection options. Our results show the approach to significantly lower energy errors and measurement variances of (simulated) quantum computations

    Szenariobasierte Validierung von Produktprofilen in der Frühen Phase der PGE-Produktgenerationsentwicklung

    Get PDF
    In der Frühen Phase der PGE-Produktgenerationsentwicklung werden Entscheidungen unter einem hohen Grad an Unsicherheit getroffen. Gleichzeitig haben diese Entscheidungen einen bedeutenden Einfluss auf den späteren Markterfolg von Produkten. Somit ist eine frühzeitige und kontinuierliche Validierung für den Erfolg zukünftiger Produkte notwendig. In diesem Beitrag wird ein Ansatz präsentiert, der es erlaubt, grundlegende Produkteigenschaften in der Frühen Phase der PGE-Produktgenerationsentwicklung zu beschreiben und zu modellieren. Des Weiteren werden die unterschiedlichen Beschreibungsmodelle analysiert und miteinander verglichen. Anschließend wird veranschaulicht, welche Modelle und Technologien genutzt werden können, um die gewünschten Produkteigenschaften zu validieren. Im Hinblick auf die Validierungsmethode bestimmen die Ergebnisse einer durchgeführten Expertenbefragung die Relevanz von einzelnen Umfeldern. Abschließend wird eine szenariobasierte Methode zur Validierung von Produktprofilen angeleitet und auf Grundlage eines konkreten Produktprofils bewertet

    The Reference System in the Model of PGE: Proposing a Generalized Description of Reference Products and their Interrelations

    Get PDF
    Samsung recently introduced a new smartphone display with increased breaking resistance, which will probably be relevant for future cars as well. This example shows that subsystems, in general artefacts from former development processes can be relevant for subsequent projects. Their integration has to be planned, i.a. even before the original product is in the market and across branches. The research on supporting methods requires a suitable description model for this phenomenon. Research in design reuse and PGE – product generation engineering addresses this only partially yet. Design reuse focuses on the informational aspect, PGE refers primarily to reference products. This contribution aims at closing this gap as a basis for future research. Two case studies from industry projects by the authors and an example from foresight and product planning show the role of artefacts from former development processes in running projects. It is described which artefacts are used as a reference, why they are used and when. Based on these findings the authors propose the term “reference system” to depict the whole set of artefacts, which serves as a basis for every product development project

    Future-oriented PGE-product Generation Engineering: An Attempt to Increase the Future User Acceptance through Foresight in Product Engineering Using the Example of the iPhone User Interface

    Get PDF
    During the process of product engineering, decisions with uncertain consequences have to be made about future development (Albers et al., 2017a). Customer, user and vendor requirements that are already known and those who are relevant for the future have to be recognized and transferred into consistent projects. Classical approaches like customer surveys or market analyses are only partially useful for anticipating or validating future product requirements since they rather evaluate todays situation. Methods of foresight are preferably applied to make decisions under circumstances of uncertainty and to generate future knowledge. The following work treats thus a system that enables the user to deduce future requirements based on trend analyses. The system which was first mentioned in Albers et al. and further developed in Marthaler et al. will serve as the basis. (Albers et al., 2018a; Marthaler et al., 2019). The goal is to present and evaluate a system based on the analysis and identification of trends that allows to identify robust requirements for future product generations and to transfer them into concrete development agreements in the form of a development road map
    corecore